61 research outputs found

    Estimating the Number of Solutions of Cardinality Constraints through range and roots Decompositions

    Get PDF
    International audienceThis paper introduces a systematic approach for estimating the number of solutions of cardinality constraints. A main difficulty of solutions counting on a specific constraint lies in the fact that it is, in general, at least as hard as developing the constraint and its propaga-tors, as it has been shown on alldifferent and gcc constraints. This paper introduces a probabilistic model to systematically estimate the number of solutions on a large family of cardinality constraints including alldifferent, nvalue, atmost, etc. Our approach is based on their decomposition into range and roots, and exhibits a general pattern to derive such estimates based on the edge density of the associated variable-value graph. Our theoretical result is finally implemented within the maxSD search heuristic, that aims at exploring first the area where there are likely more solutions

    Rotation-based formulation for stable matching

    Get PDF
    We introduce new CP models for the many-to-many stable matching problem. We use the notion of rotation to give a novel encoding that is linear in the input size of the problem. We give extra filtering rules to maintain arc consistency in quadratic time. Our experimental study on hard instances of sex-equal and balanced stable matching shows the efficiency of one of our propositions as compared with the state-of-the-art constraint programming approach

    On Maximum Weight Clique Algorithms, and How They Are Evaluated

    Get PDF
    Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∌ 2500 at 1 Hz and ∌ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∌ 3 at 40◩ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution

    Simulation and experimentation of heat transfer in a solar distillation still

    No full text
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.This paper deals with a simple and inexpensive solar desalination configuration. The performance of a simple solar still operating under Maltese climatic conditions is analysed both theoretically and experimentally. The internal and external heat transfer modes of the distillation unit are examined. This paper concludes that the distillation rate in a simple solar distiller increases with ambient temperature and solar radiation, even though the condensation capacity of the glass is reduced. A higher wind speed decreases the evaporation and condensation processes. The energy fractions within the solar still have also been analysed. The simulations and the experiments conclude that the glass components handle the bulk of the heat transferred in a solar still namely radiation, evaporation and condensation and thus the distillation efficiency is enhanced by improving the thermal and optical properties of the glass.dc201

    The expressive power of binary linear programming

    No full text
    Springer Verlag LNC

    On the Efficiency of Impact Based Heuristics

    No full text

    Deriving Information from Sampling and Diving

    No full text
    • 

    corecore